Dokumentation von Standsicherheitsnachweisen im Stahlbau

Schnittstelle zwischen Planung und Ausführung

Prof. Dr.-Ing. Ralf Steinmann
Beratung im Stahlbau
Honorarprofessor am Fachgebiet
Stahlbau der TU-Darmstadt
Sachverständiger für Stahl- und
Verbundbau (öbuv IngKH)

www.stpbst.de

Inhalt und Zweck der Dokumentation

- Dokumentation des Tragwerksentwurfes
 - Statische Systeme, Annahmen, Geometrie, Querschnitte,
 Materialien, Lagerungsbedingungen und Belastungen
- Ermittlung der Beanspruchungen
 - für alle Bauteile (Träger) des Tragwerks
 - für alle Knotenpunkte, Anschlüsse und Verbindungen
- Erforderliche Nachweise der Tragfähigkeit
 - für alle Bauteile des Tragwerks
 - für alle Knotenpunkte, Anschlüsse und Verbindungen
- Zweck der Dokumentation
 - zur unabhängigen Prüfung der Berechnungen
 - zur weiteren Verwendung bei der Erstellung von Herstellungsunterlagen (Werkstattzeichnungen etc.)

Schnittstelle zur Ausführung

I HOAI

Grundleistung LPH 4:

- a) Aufstellen der prüffähigen statischen Berechnungen für das Tragwerk unter Berücksichtigung der vorgegebenen bauphysikalischen Anforderungen
- c) Anfertigen der Positionspläne
- Grundleistung LPH 5:
- Zeichnerische Darstellung...
 zum Beispiel Bewehrungspläne,
 Stahlbaupläne mit Leitdetails
 (keine Werkstattzeichnungen)
- Besondere L. LPH 5:
- Konstruktion und Nachweise der Anschlüsse im Stahlbau
- Werkstattzeichnungen

Angaben

2.2.20 Angaben für die Erstellung der Werkstattzeichnungen mit allen Bauteilen,
Anschlüssen und Verbindungen, z. B. Querschnitte,
Materialien,
Blechdicken,
Schrauben,
Schweißnähte.

Anschlusskräfte

VOB DIN 18335

3. Ausführung:

→3.1.4 Der Auftragnehmer hat, auf der Basis der vom Auftraggeber zu übergebenden Ausführungsunterlagen, die erforderlichen Herstellungsunterlagen (Werkstattzeichnungen etc.) vor Fertigungsbeginn zu erstellen.

4.2 Besondere Leistungen

4.2.21 Erstellen von Ausführungsunterlagen, z.B. statische Berechnungen, Detailnachweise einschließlich der Verbindungsmittel.

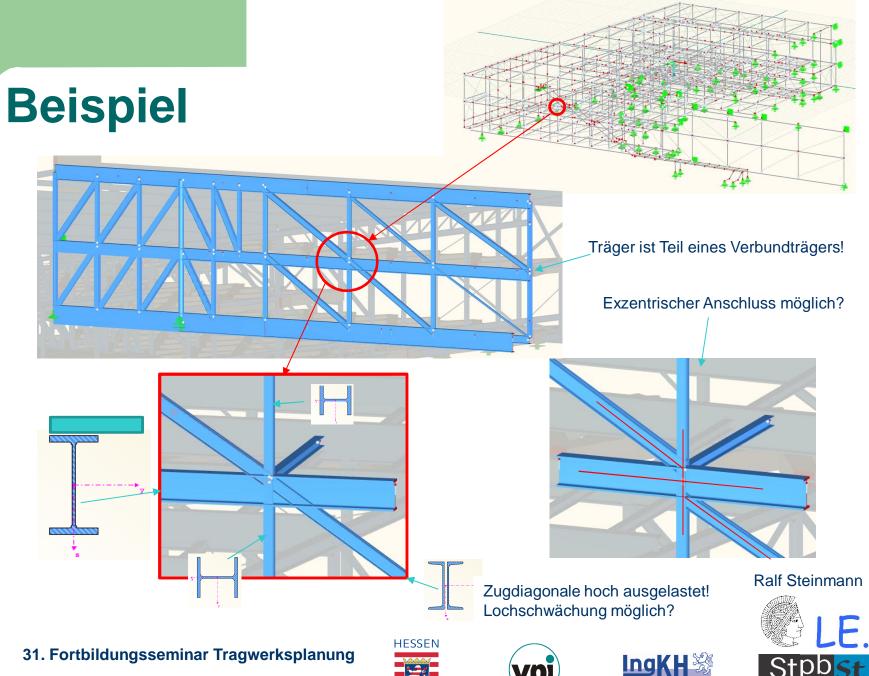
Ralf Steinmann

Der Teufel liegt im Detail

Angaben für die Erstellung von Werkstattzeichnungen und Detailnachweisen

- Querschnitte, Halsnähte bei Schweißprofilen, Material, Güteanforderungen, Ausführungsklasse EXC, Korrosionsschutz
- Anschlussschnittgrößen, Knotenbeanspruchungen
- Berücksichtigung von Reserven im Knotenbereich z.B. für
 - Querschnittsschwächung durch Löcher,
 - Mehrachsige Spannungszustände an Kreuzungen
 - Schub in Rahmenecken.
 - Exzentrizität von Zug- Druckstäben
- Leitdetails -> Richtzeichnungen
 - Statisch und konstruktiv umsetzbar

(hier nur die wesentlichen Punkte siehe z.B. BFS-RL 07-102, ZTV-ING, Ri-EDV-AP-2001)



Ralf Steinmann

am 05.09.2017 in Friedberg (Hessen)

Richtlinie BFS-RL 07-102

Dokumentation von Standsicherheitsnachweisen im Stahlbau

(BFS-RL 07-102 (Ausgabe 10/2016)

Allgemeine Hinweise

- Aufbau und Inhalt mit stichpunktartiger Auflistung stahlbauspezifischer Aspekte
- Vorschlag für eine Anschlusskrafttabelle
- Checkliste zur Unterstützung bei der Dokumentation

Hierarchie bei den Details

- Knoten: Bereich in dem mindestens zwei Bauteile miteinander verbunden werden.
- Anschluss: Bereich eines Knotens, in dem genau zwei Bauteile miteinander verbunden werden.
- Verbindung: Verbindungsmittel (Schrauben, Schweißnähte) und die unmittelbar angrenzenden Elemente.

https://www.bauforumstahl.de/upload/documents/Richtlinien/07_102_Richtlinie_Dokumentation_von_Standsicherheitsnachweisen.pdf

31. Fortbildungsseminar Tragwerksplanung am 05.09.2017 in Friedberg (Hessen)

www.stpbst.de

Ralf Steinmann

Richtlinie BFS-RL 07-102

Dokumentation von Standsicherheitsnachweisen im Stahlbau

(BFS-RL 07-102 (Ausgabe 10/2016)

Knotenklassen

Die Knotenklassen ergeben sich aus den gewählten statischen Systemen und den gewählten Querschnitten.

Knotenklasse A

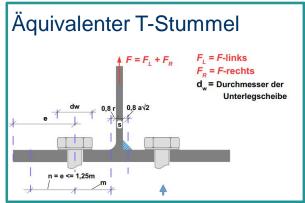
Knoten mit typisierten Anschlüssen, allgemeiner bauaufsichtlicher Zulassung oder geprüfter Typenstatik, für die keine weiteren Nachweise im Knoten und für das Gesamtsystem erforderlich sind

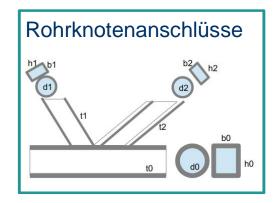
Knotenklasse B

Knoten mit Anschlüssen, für die Berechnungsmodelle in Regelwerken oder der Fachliteratur veröffentlicht sind

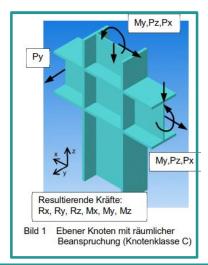
Knotenklasse C – (Leitdetails)
 Knoten, die nicht in die Knotenklassen A oder B eingeordnet werden können

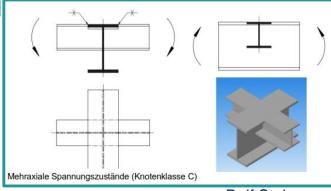
https://www.bauforumstahl.de/upload/documents/Richtlinien/07_102_Richtlinie_Dokumentation_von_Standsicherheitsnachweisen.pdf


Knotenklassen


Knotenklasse A

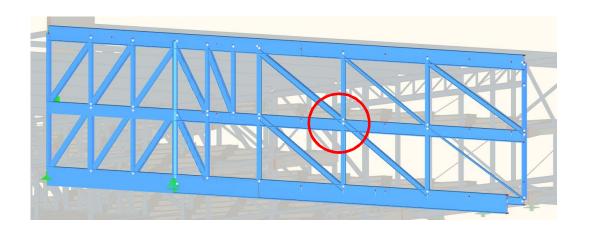
	N _{R,d} [kN]	N _{Rd} [kN] Gewinde gerollt	
DT-S460 M-LH / M-RH	Gewinde geschnitten		
	mit / ohne Schlüsselfläche	ohne Schlüsselfläche	mit Schlüsselfläche
M 6	9,05	9,05	9,05
M 8	16,47	16,47	16,47
M10	26,10	26,10	24,49
M12	37,92	37,92	37,39
M16	70,50	70,50	68,02
M20	110,2	110,2	110,2
M24	158,6	158,6	151,8
M27	206,7	205,3	197,6
M30	252.3	252.3	244.1

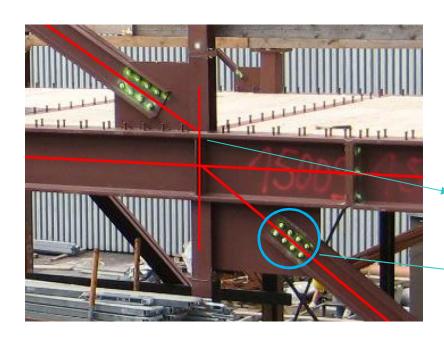

Knotenklasse B



Knotenklasse C

Unübliche Kombination von Querschnitten





Beispiel

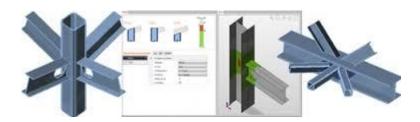
Mehraxiale Beanspruchung im Steg, Verbundwirkung im Träger? Beanspruchung des Trägers und des Knotenpunktes müssen gemeinsam betrachtet werden! ->

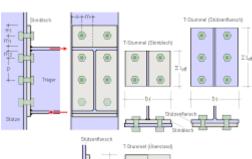
Knotenklasse C

Exzentrischer Anschluss oben

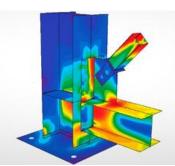
Teilbereich des Knotens Diagonalenanschluss

Knotenklasse B





Nachweisprogramme



- Umsetzung der Nachweismethoden aus EN 1993-1-8
- Kombinationen von Anschlüssen an einem Knoten oft nicht möglich
- Schlecht nachvollziehbare / prüfbare Dokumentation
- Konstruktive Aspekte (Fertigung / Montage) bleiben unberücksichtigt.
- Bearbeitungsaufwand für den Ingenieur hoch, besonders wenn viele Schnittgrößenkombinationen zu untersuchen sind.

Wirtschaftlich Ergebnisse?

- Die oft gepriesene Wirtschaftlichkeit moderner Nachweise ist fraglich!
 - Hoher Ingenieuraufwand trotz EDV-Unterstützung
 - Oft unwirtschaftlich im Gesamtzusammenhang
 - Großer Abstimmungsaufwand bei integralen Berechnungsmethoden (z.B. halbsteife Verbindungen, Gesamtmodelle statt Teilmodelle)
- Ausweg:
 - Bauwerk in verschiedene Tragwerke gliedern (vertikaler Lastabtrag / Horizontale Aussteifung etc.)
 - Tragwerk so einfach wie möglich entwerfen
 - Vermeiden von Überlagerungen verschiedener Tragwirkungen

Ralf Steinmann

BIM - Building Information Modeling

- Ordnung muss sein
 - Die Auswahl von Daten und 3D-Modellen für den BIM-Prozess muss wohlüberlegt sein.
 - Der Aufwand bei der Verwaltung der BIM-Daten wächst überproportional mit dem Detailierungsgrad von 3D-Modell und Datenmenge
 - BIM ersetzt nicht den typischen Planungsprozess
 - Für eine effektive Planung müssen die typischen Planungsschritte: Grundlagenermittlung / Entwurf (Vorentwurf / Varianten) / Genehmigungsplanung / Ausführungsplanung nach wie vor in dieser Reihenfolge durchlaufen werden.
 - BIM erfordert übergeordnet mehr Disziplin
 - Alle Beteiligten müssen kompatible Daten erzeugen (Dies gilt auch für den Auftraggeber). Die Art des Datenaustausches, die Verantwortung für die Richtigkeit verschiedener Daten, Änderungs- oder Anpassungsprozesse von widersprüchlichen Daten und Modellen müssen bereits am Anfang organisiert werden.

Ralf Steinmann

Bau- und Vertragsrecht

- EU-Klage zur Bauregelliste eingestellt!
 - Bauregelliste wird zur Verwaltungsvorschrift. Eine Mustervorlage wurde bereits vom DIBt veröffentlicht.

https://www.dibt.de/de/DIBt/DIBt-EuGH-Urteil.html

- BGB Novellierung
 - Teile der VOB wurden im BGB übernommen
 http://www.bmjv.de/SharedDocs/Gesetzgebungsverfahren/DE/Reform_Bauvertragsrecht.html
- ⊢ HOAI?
- I VOB Teil C DIN 18335 (Kommentar ISBN:978-3-410-25592-5)
 - Quo Vadis?

Arbeitsteilung im Stahlbau

- Tragwerksentwurf auch unterBerücksichtigung von Fertigungs- undMontageaspekten
- Leistungstrennung von Detailnachweisen mit Projektbezogener Schnittstellenbeschreibung
- Kooperative Zusammenarbeit zwischen den Planern und dem Auftraggeber regeln.

Empfehlungen

- Besinnung auf die Kernkompetenz des Bauingenieurs back to the roots:
 - Simplifikation
 - Verständnis für die zu lösende Aufgabe
 - Tragwerk entwerfen
 - Gesamtzusammenhang in Betracht ziehen
 - Software als Hilfsmittel einsetzen.
 (Software kann nicht erklären wie ein Tragwerk funktioniert!)
 - Kooperative Zusammenarbeit mit allen Beteiligten
- Die beste Lösung entsteht nur gemeinsam
 - Nach John Nash (Wirtschaftsnobelpreisträger)

Dokumentation von Standsicherheitsnachweisen im Stahlbau

Schnittstelle zwischen Planung und Ausführung

Prof. Dr.-Ing. Ralf Steinmann
Beratung im Stahlbau
Honorarprofessor am Fachgebiet
Stahlbau der TU-Darmstadt
Sachverständiger für Stahl- und
Verbundbau (öbuv IngKH)

www.stpbst.de